Performance Improvement Through Indexing of Turbine Airfoils: Part 1 — Experimental Investigation FREE

[+] Author Affiliations
F. W. Huber, P. D. Johnson

Pratt & Whitney, West Palm Beach, FL

O. P. Sharma, J. B. Staubach

Pratt & Whitney, East Hartford, CT

S. W. Gaddis

National Aeronautics & Space Administration, Marshall Space Flight Center, Huntsville, AL

Paper No. 95-GT-027, pp. V001T01A001; 8 pages
  • ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
  • Volume 1: Turbomachinery
  • Houston, Texas, USA, June 5–8, 1995
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7878-1
  • Copyright © 1995 by ASME


This paper describes the results of a study to determine the performance improvements achievable by circumferentially indexing successive rows of turbine stator airfoils. An experimental / analytical investigation has been completed which indicates significant stage efficiency increases can be attained through application of this airfoil clocking concept. A series of tests was conducted at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to experimentally investigate stator wake clocking effects on the performance of the Space Shuttle Main Engine Alternate Fuel Turbopump Turbine Test Article. Extensive time-accurate Computational Fluid Dynamics (CFD) simulations have been completed for the test configurations. The CFD results provide insight into the performance improvement mechanism.

Part one of this paper describes details of the test facility, rig geometry, instrumentation, and aerodynamic operating parameters. Results of turbine testing at the aerodynamic design point are presented for six circumferential positions of the first stage stator, along with a description of the initial CFD analyses performed for the test article. It should be noted that first vane positions 1 and 6 produced identical first to second vane indexing. Results obtained from off-design testing of the “best” and “worst” stator clocking positions, and testing over a range of Reynolds numbers are also presented.

Part two of this paper describes the numerical simulations performed in support of the experimental test program described in part one. Time-accurate Navier-Stokes flow analyses have been completed for the five different turbine stator positions tested. Details of the computational procedure and results are presented. Analysis results include predictions of instantaneous and time-average mid-span airfoil and turbine performance, as well as gas conditions throughout the flow field. An initial understanding of the turbine performance improvement mechanism is described.

Copyright © 1995 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In