0

SiC High Temperature Electronics for Next Generation Aircraft Controls Systems FREE

[+] Author Affiliations
John F. Perkins, Richard H. Hopkins, Charles D. Brandt, Anant K. Agarwal, Suresh Seshadri, Richard R. Siergiej

Westinghouse Science & Technology Center, Pittsburgh, PA

Paper No. 96-GT-106, pp. V005T15A013; 7 pages
doi:10.1115/96-GT-106
From:
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME

abstract

Several organizations, including Westinghouse, CREE, and ATM, as well as researchers in Japan and Europe, are working to develop SiC power devices for reliable, high power and high temperature environments in military, industrial, utility, and automotive applications. Other organizations, such as NASA Lewis and several universities, are also doing important basic work on basic SiC technology development. It has been recognized for two decades that the superior properties of SiC lead to range of devices with higher power, greater temperature tolerance, and significantly more radiation hardness than silicon or GaAs. This combination of superior thermal and electrical properties results in SiC devices that can operate at up to ten times the power density of Si devices for a given volume.

Recent research has focused on the development of vertical metal oxide semiconductor field effect transistor (VMOSFET) power device technology, and complementary high speed, temperature-tolerant rectifier-diodes for power applications. We are also evaluating applications for field control thyristors (FCT) and MOS turn-off thyristors (MTO). The technical issues to be resolved for these devices are also common to other power device structures. The present paper reviews the relative benefits of various power devices structures, with emphasis on how the special properties of SiC enhance the desirability of specific device configurations as compared to the Si-based versions of these devices. Progress in SiC material quality and recent power device research will be reviewed, and the potential for SiC-based devices to operate at much higher temperatures than Si-based devices, or with enhanced reliability at higher temperatures will be stressed. We have already demonstrated 1000V breakdown, current densities of 1 kA/cm2, and measurements up to 400°C in small diodes. The extension of this work will enable the implementation of highly distributed aircraft power control systems, as well as actuator and signal conditioning electronics for next generation engine sensors, by permitting electronic circuits, sensors and smart actuators to be mounted on or at the engine.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In