Temperature Estimation and Life Prediction of Turbine Blades Using Post Service Oxidation Measurements PUBLIC ACCESS

[+] Author Affiliations
V. P. Swaminathan

Southwest Research Institute, San Antonio, TX

J. M. Allen

Consulting Engineer, Cupertino, CA

G. L. Touchton

Electric Power Research Institute, Palo Alto, CA

Paper No. 96-GT-528, pp. V005T14A062; 14 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME


The depth of internal oxidation and nitridation from the surface of the 16 cooling holes in a first-stage turbine blade was measured by optical microscopy after 32,000 hours of service. Maximum depth of penetration was 15.5 mils (0.4 mm) at the trailing edge hole. An effort was made to predict hole surface metal temperatures based on these measurements using the Arrhenius relationship between time and temperature with depth of oxidation assumed to be parabolic with time. Reasonable correlations were obtained between finite element analysis results and temperature estimates based on the oxidation measurements. In the thickest part of the airfoil, where metal temperature is minimum, intergranular cracks up to 12.6 mils (0.32 mm) in depth were found at the surface of the cooling holes. Measurable oxidation attack was only one to two mils (0.025–0.050mm). Based on an approximate elastic-relaxation-local inelastic stress analysis, it was calculated that inelastic local strains of over one percent occur at the points of cracking. No cracking was observed in the more heavily oxidized, lower stressed, hotter holes. However, cracking occurred in a trailing edge tip cooling hole when weld repair of the tip squealer was attempted, due to embrittlement and grain boundary oxidation from service exposure. Temperature estimates suitable for life assessment purposes using oxidation measurements appears to be a possible technique that should be further developed and validated.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In