A Novel Limit Distribution for the Analysis of Randomly Mistuned Bladed Disks PUBLIC ACCESS

[+] Author Affiliations
Marc P. Mignolet

Arizona State University, Tempe, AZ

Chung-Chih Lin

Ford Motor Company, Dearborn, MI

Paper No. 96-GT-414, pp. V005T14A050; 9 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME


A recently introduced perturbation technique is employed to derive a novel closed form model for the probability density function of the resonant and near-resonant, steady state amplitude of blade response in randomly mistuned disks. In its most general form, this model is shown to involve six parameters but, in the important practical case of a pure stiffness (or frequency) mistuning, only three parameters are usually sufficient to completely specify this distribution. A series of numerical examples are presented that demonstrate the extreme reliability of this three-parameter model in accurately predicting the entire probability density function of the amplitude of response, and in particular the large amplitude tail of this distribution which is the most critical effect of mistuning.

Copyright © 1996 by ASME
Topics: Disks
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In