0

Unsteady Flow in Oscillating Turbine Cascade: Part 1 — Linear Cascade Experiment FREE

[+] Author Affiliations
L. He

University of Durham, Durham, UK

Paper No. 96-GT-374, pp. V005T14A037; 8 pages
doi:10.1115/96-GT-374
From:
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME

abstract

An experimental and computational study has been carried out on a linear cascade of low pressure turbine blades with the middle blade oscillating in a torsion mode. The main objectives of the present work were to enhance understanding of the behaviour of bubble type of flow separation and to examine the predictive ability of a computational method. In addition, an attempt was made to address a general modelling issue: was the linear assumption adequately valid for such kind of flow?

In Part 1 of this paper, the experimental work was described. Unsteady pressure was measured along blade surfaces using off-board mounted pressure transducers at realistic reduced frequency conditions. A short separation bubble on the suction surface near the trailing edge and a long leading-edge separation bubble on the pressure surface were identified. It was found that in the regions of separation bubbles, unsteady pressure was largely influenced by the movement of reattachment point, featured by an abrupt phase shift and an amplitude trough in the 1st harmonic distribution. The short bubble on the suction surface seemed to follow closely a laminar bubble transition model in a quasi-steady manner, and had a localized effect. The leading-edge long bubble on the pressure surface, on the other hand, was featured by a large movement of the reattachment point, which affected the surface unsteady pressure distribution substantially. As far as the aerodynamic damping was concerned, there was a destabilizing effect in the separated flow region, which was however largely balanced by the stabilizing effect downstream of the reattachment point due to the abrupt phase change.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In