The Transfer Matrix–Component Mode Synthesis for Rotordynamic Analysis PUBLIC ACCESS

[+] Author Affiliations
Huang Taiping

Nanjing University of Aeronautics and Astronautics, Nanjing, China

Paper No. 96-GT-079, pp. V005T14A010; 6 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME


The transfer matrix–component mode synthesis has been developed for the analysis of critical speed, response to imbalance and rotordynamic optimal design of multi–spool rotor system. This method adopted the advantages of the transfer matrix method for the train structure and the component mode synthesis for reducing degrees of freedom. In this method, the whole system is divided into several subsystems at the boundary coordinates. The constrained vibration modes and the static deflection curves of the constrained rotor subsystems are analysed by the improved transfer matrix method. The whole system is connected together by the component mode synthesis in accordance with the coordinate transformation. Numerical examples show that this method is superior to the traditional transfer matrix method and the component mode synthesis by FEM. This method has been successfully used for the rotordynamic analysis and optimal design of the compressors and the gas turbine aeroengines.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In