0

Free Vibration of a Rotating Disk–Blade Coupled System With Shrouds FREE

[+] Author Affiliations
Yukinori Kobayashi, Gen Yamada

Hokkaido University, Sapporo, Japan

Takahiro Tomioka

Railway Technical Research Institute, Kokubunji, Japan

Paper No. 96-GT-022, pp. V005T14A005; 7 pages
doi:10.1115/96-GT-022
From:
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME

abstract

The free vibration of rotating disk–blade coupled system is investigated by the Ritz method. Centrifugal effects due to rotation are taken into account for both of the disk and blades. The boundary and continuity conditions between the disk and blades are satisfied by means of artificial springs introduced at their joints, and the orthogonal polynomials generated by using the Gram–Schmidt process are employed as admissible functions for both of the disk and blades. Frequency parameters and mode shapes of vibration are obtained to investigate the vibration of the disk–blade coupled system.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In