Thermocyclic Behavior of Variously Stabilized EB-PVD Thermal Barrier Coatings PUBLIC ACCESS

[+] Author Affiliations
U. Schulz, K. Fritscher, M. Peters

DLR German Aerospace Research Establishment, Cologne, Germany

Paper No. 96-GT-488, pp. V005T12A011; 7 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME


The demand for increasing gas inlet temperatures in modem gas turbines up to 1500°C and above is the main reason for the need for more reliable thermal barrier coatings. New ceramics should provide higher phase stability and better resistance against chemical attack by pollutants in the combustion gas.

Electron-beam physical vapor deposition (EB-PVD) processed, ZrO2-based TBCs were generated on bond-coated superalloy directionally solidified (DS) samples. Common yttria-stabilized zirconias of two different compositions, as well as novel stabilizers like CeO2 and La2O3 were investigated. A columnar structure was established during high-rate deposition in all cases. Diameter, degree of ordering of the columns and phase composition depended on stabilizer oxide and content. The role of differences of vapor pressures is addressed with regard to chemical homogeneity of the coatings.

The performance of the TBCs having various stabilizers was investigated in a cyclic oxidation furnace test and in a burner rig at Mach 0.3. The results were correlated to the type and content of stabilizer with special emphasis on phase analyses.

Evaporation of new ceramic compositions necessitates special precautions because the vapor pressures of the components may differ too much. A new dual-source evaporation coater allows the production of these innovative TBCs with close control of chemistry. The potential of the equipment will be discussed.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In