Joining of Wrought Ni-Base Combustor Alloys FREE

[+] Author Affiliations
A. M. Ritter, M. R. Jackson, N. Abuaf, M. A. Lacey, A. S. Feitelberg

GE Corporate Research & Development, Schenectady, NY

P. Lang

Acraline Products, Inc., Tipton, IN

Paper No. 96-GT-219, pp. V005T12A001; 7 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7876-7
  • Copyright © 1996 by ASME


In many advanced combustor concepts, such as the RQL (rich-quench-lean) combustor, the requirement of low NOx emission makes film cooling of the hot gas path surfaces undesirable. Double-walled structures with relatively low aspect ratio (height/width) rectangular passages and with well-controlled thin hot gas side metal walls are an alternative to film cooling. The additional application of other cooling techniques, such as impingement and surface enhancements, make efficient use of the limited cooling air available. However, the use of cooling channels to increase heat transfer coefficients on the coolant side may ultimately require well-bonded structures. Alternate methods of bonding have been considered for Ni-base alloy HA230-to-HA230 joints in thin-walled structures, with emphasis on bonds produced by hot isostatic pressing and by laser welding. For hot isostatic pressed (HIPed) structures, mechanical strength and ductility have been measured as a function of temperature for structures prepared after a number of different surface cleaning treatments prior to joining. The surface cleanliness has been characterized by scanning electron microscopy, and the after-HIP bond line microstructure has been evaluated as formed and after mechanical testing. Characterization of laser welds produced at Laserdyne for Acraline Products has consisted of scanning electron microscopy of the weld surfaces and metallography of weld/substrate cross-sections, looking at solidification/heat affected features and defects.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In