Comparison of k-ε Models in Predicting Heat Transfer and Skin Friction Under High Free Stream Turbulence PUBLIC ACCESS

[+] Author Affiliations
Ganesh R. Iyer, Savash Yavuzkurt

The Pennsylvania State University, University Park, PA

Paper No. 96-GT-537, pp. V004T09A060; 8 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7875-0
  • Copyright © 1996 by ASME


Calculations of the effects of high free stream turbulence (FST) on heat transfer and skin friction in a flat plate turbulent boundary layer using different k-ε models (Launder-Sharma, K-Y Chien, Lam-Bremhorsi and Jones-Launder) are presented. This study was carried out in order to investigate the prediction capabilities of these models under high FST conditions. In doing so, TEXSTAN, a partial differential equation solver which is based on the ideas of Patankar and Spalding and solves steady-flow boundary layer equations, was used. Firstly, these models were compared as to how they predicted very low FST (≤ 1% turbulence intensity) cases. These baseline cases were tested by comparing predictions with both experimental data and empirical correlations. Then, these models were used in order to determine the effect of high FST (>5% turbulence intensity) on heat transfer and skin friction and compared with experimental data. Predictions for heat transfer and skin friction coefficient for all the turbulence intensities tested by all the models agreed well (within 1–8%) with experimental data. However, all these models predicted poorly the dissipation of turbulent kinetic energy (TKE) in the free stream and TKE profiles. Physical reasoning as to why the aforementioned models differ in their predictions and the probable cause of poor prediction of free-stream TKE and TKE profiles are given.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In