0

Computational Prediction of Heat Transfer to Gas Turbine Nozzle Guide Vanes With Roughened Surfaces FREE

[+] Author Affiliations
S. M. Guo, T. V. Jones

University of Oxford, England

G. D. Lock

University of Bath, England

S. N. Dancer

Rolls-Royce plc, Derby, England

Paper No. 96-GT-388, pp. V004T09A046; 11 pages
doi:10.1115/96-GT-388
From:
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7875-0
  • Copyright © 1996 by ASME

abstract

The local Mach number and heat transfer coefficient over the aerofoil surfaces and endwalls of a transonic gas turbine nozzle guide vane have been calculated. The computations were performed by solving the time averaged Navier-Stokes equations using a fully three-dimensional computational code (CFDS) which is well established at Rolls-Royce.

A model to predict the effects of roughness has been incorporated into CFDS and heat transfer levels have been calculated for both hydraulically smooth and transitionally rough surfaces. The roughness influences the calculations in two ways; firstly the mixing length at a certain height above the surface is increased; secondly the wall function used to reconcile the wall condition with the first grid point above the wall is also altered. The first involves a relatively straightforward shift of the origin in the van Driest damping function description, the second requires an integration of the momentum equation across the wall layer. A similar treatment applies to the energy equation.

The calculations are compared with experimental contours of heat transfer coefficient obtained using both thin film gauges and the transient liquid crystal technique. Measurements were performed using both hydraulically smooth and roughened surfaces, and at engine-representative Mach and Reynolds numbers. The heat transfer results are discussed and interpreted in terms of surface-shear flow visualisation using oil and dye techniques.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In