Inverse Heat Transfer Engineering Design for Internally Cooled Gas Turbine Airfoils PUBLIC ACCESS

[+] Author Affiliations
Francisco J. T. Cunha, David A. DeAngelis

General Electric Company, Schenectady, NY

Paper No. 96-GT-312, pp. V004T09A038; 11 pages
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7875-0
  • Copyright © 1996 by ASME


In the design and development of modern gas turbine machines for efficient power generation in combined cycle applications, nozzle segments with airfoils and sidewalls need to be effectively cooled to operate in gas temperature environments in the excess of the melting point of the material of construction. Particular attention is given to the thermal evaluation as it affects component design life and performance. In this context, an optimization methodology is prescribed for inverse determination of required coolant heat transfer as a function of hot gas conditions and subjected to constraints associated with allowable metal temperature. A general boundary element method is used in the optimization process to provide a relatively fast and economically feasible design procedure. The optimized set of heat transfer results are converged when the external metal temperatures fall within acceptable limits. Once the magnitude and distribution of required coolant heat transfer coefficients are obtained, the cooling technique can be devised using available or referenced correlations for impingement jets through insert plates, banks of pin fins, turbulators, or just simply forced convection through internal passages. An illustrative example is presented with a Joukowski airfoil using a finite element method as an alternative method of solution for comparison and verification.

Copyright © 1996 by ASME
This article is only available in the PDF format.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In