0

3-D Numerical Simulation of the Flow Through a Turbine Blade Cascade With Cooling Injection at the Leading Edge FREE

[+] Author Affiliations
Dieter Bohn, Karsten Kusterer, Harald Schönenborn

Aachen University of Technology, Germany

Paper No. 96-GT-150, pp. V004T09A002; 8 pages
doi:10.1115/96-GT-150
From:
  • ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
  • Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration
  • Birmingham, UK, June 10–13, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7875-0
  • Copyright © 1996 by ASME

abstract

High process efficiencies and high power-weight ratios are two major requirements for the economic operation of present day gas turbines. This development leads to extremely high turbine inlet temperatures and adjusted pressure ratios. The permissible hot gas temperature is limited by the material temperature of the blade. Intensive cooling is required to guarantee an economically acceptable life of the components which are in contact with the hot gas. Although film-cooling has been successfully in use for a couple of years along the suction side and pressure side, problems occur in the vicinity of the stagnation point due to high stagnation pressures and opposed momentum fluxes. In this area basic investigations are necessary to achieve a reliable design of the cooled blade.

In the present calculations, a code for the coupled simulation of fluid flow and heat transfer in solid bodies is employed. The numerical scheme works on the basis of an implicit finite volume method combined with a multi-block technique. The full, compressible 3-D Navier-Stokes equations are solved within the fluid region and the Fourier equation for beat conduction is solved within the solid body region. An elliptic grid generator is used for the generation of the structured computational grid, which is a combination of various C-type and H-type grids.

Results of a 3-D numerical simulation of the flow through a turbine blade cascade with and without cooling ejection at the leading edge through two slots are presented. The results are compared with 2-D numerical simulations and experimental results. It is shown that the distribution of the coolant on the blade surface is influenced by secondary flow phenomena which can not be taken into account by the 2-D simulations. Further coupled simulations with non-adiabatic walls in the leading edge region are performed with realistic temperature ratios and compared to the same case with adiabatic walls. It is shown that in the case of non-adiabatic walls the temperature on the blade wall is significantly lower than in the case of adiabatic walls.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In