0

Numerical Study of the Tip Clearance Flow Development in a Propulsion Pump Stage FREE

[+] Author Affiliations
Yu-Tai Lee

Naval Surface Warfare Center, Bethesda, MD

Chunill Hah

NASA Lewis Research Center, Cleveland, OH

James Loellbach

ICOMP/NASA Lewis Research Center, Cleveland, OH

Paper No. 96-TA-041, pp. V001T08A008; 8 pages
doi:10.1115/96-TA-041
From:
  • ASME 1996 Turbo Asia Conference
  • ASME 1996 Turbo Asia Conference
  • Jakarta, Indonesia, November 5–7, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7877-4
  • Copyright © 1996 by ASME

abstract

This paper summarizes a numerical investigation of the fundamental structure of the rotor tip-clearance vortex and its interaction with a passage trailing-edge vortex in a single-stage stator-rotor pump. The flow field of a highly-loaded rotor measured in a high Reynolds number pump facility (HIREP) is used for comparison. The numerical solution was obtained by solving the three-dimensional Reynolds averaged Navier-Stokes equations. The calculated results are visualized in order to understand the details of the tip-vortex structure. The study shows that the tip geometry should be accurately represented to predict the tip-vortex structure correctly.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In