0

Laser Drilling Effusion Cooling Holes in Low NOx Turbine Engine Components FREE

[+] Author Affiliations
Terry L. VanderWert, Scott A. Litzer

Lumonics Corporation, Eden Prairie, MN

Loh Wai Meng

Lumonics Systems (S) Pte Ltd, Singapore

Paper No. 96-TA-034, pp. V001T07A005; 8 pages
doi:10.1115/96-TA-034
From:
  • ASME 1996 Turbo Asia Conference
  • ASME 1996 Turbo Asia Conference
  • Jakarta, Indonesia, November 5–7, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7877-4
  • Copyright © 1996 by ASME

abstract

The move to turbine engine designs featuring low NOx emissions and greater fuel efficiency has resulted in a major change in design and manufacture of certain engine parts such as combustion chambers. For example, effusion cooling combustor designs use thousands of 0.5 mm diameter, shallow angle (less than 30 degrees from the surface) holes to provide a film of cooling air over the surface of the combustor. A variety of thermal barrier coatings are also used to protect the surface during operation.

Laser drilling is playing a key role in the production of effusion cooling holes. Laser drilling, which uses the focused output of a high power industrial pulsed Nd:YAG laser to trepan the holes, has become the process of choice for producing these because of:

- low heat input

- rapid drilling rates

- ability to drill ceramic coated metals

- a minimum number of process variables contributes to reliable, repeatable processes

This paper reviews the laser drilling process for producing effusion cooling holes, characteristics of the holes, and developments aimed at increasing the throughput and, therefore, reducing the cost for laser drilling. The paper also summarizes the key aspects of the laser system required to produce combustors that meet airflow and other quality (metallurgical) specifications.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In