0

Crack Detection, Localization and Estimation of the Intensity in a Turbo Rotor FREE

[+] Author Affiliations
R.-W. Park

University of Wuppertal, Wuppertal, Germany

Paper No. 96-TA-031, pp. V001T07A002; 7 pages
doi:10.1115/96-TA-031
From:
  • ASME 1996 Turbo Asia Conference
  • ASME 1996 Turbo Asia Conference
  • Jakarta, Indonesia, November 5–7, 1996
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-7877-4
  • Copyright © 1996 by ASME

abstract

The goal of this paper is to describe an advanced method of a crack detection, a new way to localize the crack position and to estimate the intensity of the depth with reference to a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton-principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with undamaged shaft. This is supposed to be regarded as reference for the given system.

Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL-observer (EOB). Using the elementary observer, an Estimator (Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

Copyright © 1996 by ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In