Full Content is available to subscribers

Subscribe/Learn More  >

A Bayesian Framework of Computing and Updating Wavelet Parameter Distributions for Identifying Early Bearing Faults

[+] Author Affiliations
Peter W. Tse, Dong Wang

City University of Hong Kong, Hong Kong, China

Paper No. DETC2014-34861, pp. V008T11A101; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 26th Conference on Mechanical Vibration and Noise
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4641-4
  • Copyright © 2014 by ASME


Rolling element bearings are widely used in machines to support rotation shafts. Bearing failures may result in machine breakdown. In order to prevent bearing failures, early bearing faults are required to be identified. Wavelet analysis has proven to be an effective method for extracting early bearing fault features. Proper selection of wavelet parameters is crucial to wavelet analysis. In this paper, a Bayesian framework is proposed to compute and update wavelet parameter distributions. First, a smoothness index is used as the objective function because it has specific upper and lower bounds. Second, a general sequential Monte Carlo method is introduced to analytically derive the joint posterior probability density function of wavelet parameters. Last, approximately optimal wavelet parameters are inferred from the joint posterior probability density function. Simulated and real case studies are investigated to demonstrate that the proposed framework is effective in extracting early bearing fault features.

Copyright © 2014 by ASME
Topics: Bearings , Wavelets



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In