0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotor Dynamics in Design of a High Speed Cryogenic Pump for Geo Stationary Launch Vehicles

[+] Author Affiliations
Srinivasa R. Jammi

Kumaraguru College of Technology, Coimbatore, IndiaAltair Engineering India, Bangalore, India

Paper No. DETC2014-34580, pp. V008T11A065; 8 pages
doi:10.1115/DETC2014-34580
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 26th Conference on Mechanical Vibration and Noise
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4641-4
  • Copyright © 2014 by ASME

abstract

On January 5th 2014 the Indian Space Research Organization successfully launched its Geo Stationary Launch Vehicle with an indigenous Cryogenic engine. One of the main design aspects is in its rotor dynamics to predict the peak amplitude unbalance whirl and the speed at which it occurs. This engine has several key technologies, one of them specifically is coupled rotors, viz., Turbine, Hydrogen Pump and Oxidizer supported on seven nonlinear rolling element bearings and several seals all mounted in a flexible casing. The conventional beam model initially adopted failed to predict the speed at which peak unbalance response occurs.

The rotor system was first developed in a solid model to determine the critical speeds of the rotor alone considering its 40000 rpm centrifugal loads with bearings treated as linear. Then, unbalance whirl of this rotor system was developed by codes specially developed for this purpose. The rolling element bearings are found to be highly nonlinear with large bearing radial forces at critical speeds. An iterative procedure was developed to match the bearing force and unbalance whirl to determine peak amplitude response speeds. Subsequently, seals and the influence of casing and internal pressures were accounted in the analysis. This paper describes the advanced rotor dynamic design of this pump.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In