0

Full Content is available to subscribers

Subscribe/Learn More  >

A Full Disturbance Model for Reaction Wheels

[+] Author Affiliations
M. P. Le, E. J. E. Cottaar

Eindhoven University of Technology, Eindhoven, The Netherlands

M. H. M. Ellenbroek

University of Twente, Enschede, The Netherlands

R. Seiler

European Space Agency, Noordwijk, The Netherlands

P. van Put

Moog Bradford, Heerle, The Netherlands

Paper No. DETC2014-34480, pp. V008T11A061; 10 pages
doi:10.1115/DETC2014-34480
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 26th Conference on Mechanical Vibration and Noise
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4641-4
  • Copyright © 2014 by ASME

abstract

Reaction wheels are rotating devices used for the attitude control of spacecraft. However, reaction wheels also generate undesired disturbances in the form of vibrations, which may have an adverse effect on the pointing accuracy and stability of spacecraft (optical) payloads. A disturbance model for reaction wheels was developed at Moog Bradford by combining empirical and theoretical models. The empirical data is obtained from a highly accurate reaction wheel characterization test setup from the European Space Agency and includes disturbance signals of ball bearings transmitted through the structures of the reaction wheel assembly. The theoretical model is derived from the equation of motion of a rigid rotor and a disc supported by two ball bearings including static, dynamic unbalances, structural modes and gyroscopic effects of the wheel rotor. To fully model the disturbance signature of the wheel, the bearing stiffness is formulated as a function of ball pass frequency and the flexibility of the supporting structural items like the reaction wheels housing are included. Finally, the empirical model is added into the theoretical model as excitations to form a full disturbance model for reaction wheels. The resulting combined model is then validated by tests on different types of Moog Bradford reaction wheels. The validated disturbance model is used to evaluate the pointing performance of spacecraft as well as to predict micro-disturbance performance for future reaction wheel designs.

Copyright © 2014 by ASME
Topics: Wheels

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In