0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Multi-Body Model to Predict the Settling Point of a Seat-Occupant System

[+] Author Affiliations
Yousof Azizi, Anil K. Bajaj, Patricia Davies

Purdue University, West Lafayette, IN

Paper No. DETC2014-35462, pp. V008T11A032; 10 pages
doi:10.1115/DETC2014-35462
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 26th Conference on Mechanical Vibration and Noise
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4641-4
  • Copyright © 2014 by ASME

abstract

The location of the hip-joint (H-Point) of a seat occupant is an important design specification which directly affects the seat comfort. Most car seats are made of polyurethane foam so the location of the H-Point is dependent on the quasi-static behavior of foam. In this study a multi-body seat-occupant model is developed which incorporates a realistic polyurethane foam model. The seat-occupant model consists of two main components: the seat model and the occupant model. In this study the seat is represented by a series of discrete nonlinear viscoelastic elements. The nonlinear elastic behavior of these elements is expressed by a higher order polynomial while their viscoelastic behavior is described by a global hereditary type model with the parameters which are functions of the compression rate. The nonlinear elastic and viscoelastic model parameters were estimated previously using the data obtained from conducting a series of quasi-static compression tests on a car seat foam sample. The occupant behavior is described by a two-dimensional multi-body model with 5 degrees of freedom. A Lagrangian formulation is used to derive the governing equations for the seat occupant model. These differential equations are solved numerically to obtain the H-Point location. These results are then used to calculate the force distribution at the seat and the occupant interfaces. The effects of different system parameters on the system response and the interfacial pressure distribution are also studied.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In