Full Content is available to subscribers

Subscribe/Learn More  >

A Technique to Detect Fatigue in the Lower Limbs

[+] Author Affiliations
Abdullatif A. Alwasel, Eihab M. Abdel-Rahman, Carl T. Haas

University of Waterloo, Waterloo, ON, Canada

Paper No. DETC2014-35484, pp. V008T11A005; 6 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 26th Conference on Mechanical Vibration and Noise
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4641-4
  • Copyright © 2014 by ASME


As muscles fatigue, their passive and active mechanical properties change increasing the susceptibility of the human body to damage. The state-of-the-art technique for muscle fatigue detection, EMG signals, is cumbersome. This paper presents a technique to detect fatigue by tracking a kinematic parameter of the musculoskeletal system. The method uses the time-history of a single joint angle to detect fatigue in the lower limbs. A sensor is mounted to the knee joint to measure the knee flexion angle. Time delay embedding is used to track the orbit of knee joint motions in a reconstructed phase-space. The reconstructed phase-space allows us to obtain information about other body parts and joints of the lower limb in addition to the knee joint, since they are all connected in an open kinematic chain. Long-time drift in the orbit location and shape in phase-space is quantified and used as a measure of lower limb fatigue. The proposed technique presents a mobile, wireless, and cheap method to assess fatigue that can act as an early warning system for the lower limb.

Copyright © 2014 by ASME
Topics: Fatigue



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In