0

Full Content is available to subscribers

Subscribe/Learn More  >

Detailed Modeling of Wind Turbine Gear Set by General-Purpose Multibody Dynamics

[+] Author Affiliations
Eduardo Paiva Okabe

University of Campinas - UNICAMP, Limeira, SP, Brazil

Pierangelo Masarati

Politecnico di Milano, Milano, Italy

Paper No. DETC2014-34898, pp. V006T10A074; 13 pages
doi:10.1115/DETC2014-34898
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME

abstract

This work presents the development of a kinematic model of a spur gear pair and the implementation of a hydrodynamic bearing in a multidisciplinary multibody dynamics software. Both models are employed to simulate the behavior of a planetary gear set typically adopted in wind turbines. Geared transmissions have been a popular choice to transmit the rotation of the main rotor to the electrical generator in this type of turbine. Compared to other kinds of transmission, a gearbox is more compact, robust and require low maintenance over its lifetime, which is interesting, since these turbines are usually installed in remote places. The gearbox of a wind turbine is normally composed by a set of spur gears and bearings, assembled in arrangement known as epicyclic. Spur gears generally have an involute profile, which allows a constant transmission of the angular speed. This kinematic constraint between gears is defined by the angle that the surface of their teeth is in contact with. This angle is known as pressure angle and, by design, it should remain constant during operation. However, a variation of the distance between gears changes this angle, which also changes the direction of the transmission of the movement. To account for this effect, the joint is described by the projection of the absolute velocity of the contact point of each gear on the line of action, which is calculated from their position. Another important group of elements are the bearings that support gear and shafts. They can absorb part of the vibration, and compensate misalignments and teeth surface failures. Hydrodynamic bearings are widely employed in turbomachinery, due to their simplicity, long life and good damping properties, which are features that wind turbines can benefit from. Most of the hydrodynamic bearing models are two dimensional, so they have to be adapted to be implemented in a multibody dynamics software. The development of these modifications is also described in this work, so any other hydrodynamic bearing model can be easily adapted using the same procedure. Finally, a model of the wind turbine gearbox is presented, and some of the features of using the aforementioned elements inside a multibody dynamics software can be highlighted.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In