Full Content is available to subscribers

Subscribe/Learn More  >

Contact Status Optimization of Multibody Dynamic Systems Using Dual Variable Transformation

[+] Author Affiliations
Carlotta Mummolo

New York University, Brooklyn, NYPolitechnic of Bari, Bari, Italy

Luigi Mangialardi

Politechnic of Bari, Bari, Italy

Joo H. Kim

New York University, Brooklyn, NY

Paper No. DETC2014-34193, pp. V006T10A069; 9 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME


Generating the motion of redundant systems under general constraints within an optimization framework is a problem not yet solved, as there is, so far, a lack of completely predictive methods that concurrently solve for the optimal trajectory and the contact status induced by the given constraints. A novel approach for optimal motion planning of multibody systems with contacts is developed, based on a Sequential Quadratic Programming (SQP) algorithm for Nonlinear Programming (NLP). The objective is to detect and optimize the contact status and the relative contact force within the optimization sequential problem, while simultaneously optimizing a trajectory. The novelty is to seek for the contact information within the iterative solution of the SQP algorithm and use this information to sequentially update the resulting contact force in the system’s dynamic model. This is possible by looking at the analytical relationship between the dual variables resulting from the constrained NLP and the Lagrange multipliers that represent the contact forces in the classical formulation of constrained dynamic systems. This approach will result in a fully predictive algorithm that doesn’t require any a priori knowledge on the contact status (e.g., time of contact, point of contact, etc.) or contact force magnitude. A preliminary formulation is presented, as well as numerical experiments on simple planar manipulators, as demonstration of concepts.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In