Full Content is available to subscribers

Subscribe/Learn More  >

Vibration Suppression of Wind Turbine Blades Using Tuned Mass Dampers

[+] Author Affiliations
Takashi Ikeda, Yuji Harata, Yusuke Sasagawa

Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

Yukio Ishida

Nagoya University, Nagoya, Aichi, Japan

Paper No. DETC2014-34336, pp. V006T10A067; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME


Passive control of flapwise vibrations of a wind turbine blade is investigated when a single tuned mass damper (TMD) is attached to the blade. The blade is subjected to a wind pressure which changes linearly with height from the ground level due to the wind shear. The vibrations of the wind turbine blade are theoretically and numerically analyzed to determine the natural frequency diagrams, frequency responses, stationary time histories and their FFT results. It is found that several peaks appear near the specific rotational speeds in the response curves for the blade because of both the wind pressure and the parametric excitation terms. It is also demonstrated that the optimal single TMD can suppress the resonance peaks if the fixed point theorem is used to determine the optimal values of the parameters of the TMD. The influences of the mass and install position of the TMD on its performance are also examined.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In