Full Content is available to subscribers

Subscribe/Learn More  >

Shock Mitigation by Energy Reversal to the High Frequency Modes

[+] Author Affiliations
Mohammad A. AL-Shudeifat

Khalifa University of Science, Technology & Research, Abu Dhabi, UAE

Alexander F. Vakakis, Lawrence A. Bergman

University of Illinois at Urbana – Champaign, Urbana, IL

Paper No. DETC2014-34088, pp. V006T10A058; 7 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME


In this computational study, a light-weight dynamic device is investigated for passive energy reversal from the lowest frequency mode to the high frequency modes of a large-scale frame structure for rapid shock mitigation. The device is based on the single-sided vibro-impact mechanism. It has two functions for passive energy transfer: a nonlinear energy sink (NES) for local energy dissipation and an energy pump to high frequency modes where a significant amount of the shock energy is rapidly dissipated. As a result, a significant portion of the shock energy induced into the linear dynamic structure can be passively reversed from the lowest frequency mode to the high frequency modes and rapidly dissipated by their modal damping. The amount of the energy dissipated by the modal damping of the high frequency modes can be controlled by the amount of inherent damping in the device. Ideally, the device can passively reverse up to 80% of the input shock energy from the lowest frequency mode to the high frequency modes when its damping is assumed to be zero and its impact coefficient of restitution is equal to unity. The shock energy redistribution between this device and the high frequency modes is found to be efficient for rapid shock mitigation in the considered 9-story dynamic structure.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In