Full Content is available to subscribers

Subscribe/Learn More  >

Vehicle Dynamics Models for Onboard Motion Planning

[+] Author Affiliations
Rudranarayan Mukherjee, Thomas Howard, Steven Myint, Johnny Chang, Jack Craft

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

Paper No. DETC2014-34831, pp. V006T10A047; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME


Offline multibody dynamics based modeling and simulation of vehicle dynamics has been pursued with varying levels of success for more than two decades. This has been used in design, controls, training, and other technical and programmatic objectives. Over the last decade, autonomous vehicle dynamics has become an important area of research. This has resulted in a growing need for onboard vehicle model that works with the vehicle controller and path planner. Typically, kinematic models have largely been used for these objectives. Use of dynamics models for onboard motion planning is a relatively new topic of research with only a handful of prior work. In this paper we report our attempts at addressing the need for onboard vehicle dynamics models for motion planning in relatively fast autonomous mobility scenarios. We present the idea of using adaptive motion models that trade fidelity and cost of simulation to enable a motion planner to select an adequate model. Towards this, we present representative simulation results that demonstrate the need for adaptivity. We then present some technical challenges with onboard vehicle models and our attempts at addressing these challenges. Finally, we present some results that compare raw vehicle data with model predictive results.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In