0

Full Content is available to subscribers

Subscribe/Learn More  >

Ideal Compliant Joints and Integration of Computer Aided Design and Analysis

[+] Author Affiliations
Ashraf M. Hamed, Antonio M. Recuero, Ahmed A. Shabana

University of Illinois at Chicago, Chicago, IL

Paramsothy Jayakumar, Michael D. Letherwood, David J. Gorsich

U.S. Army RDECOM-TARDEC, Warren, MI

Paper No. DETC2014-34423, pp. V006T10A045; 17 pages
doi:10.1115/DETC2014-34423
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME

abstract

This paper discusses fundamental issues related to the integration of computer aided design and analysis (I-CAD-A) by introducing a new class of ideal compliant joints that account for the distributed inertia and elasticity. The absolute nodal coordinate formulation (ANCF) degrees of freedom are used in order to capture modes of deformation that cannot be captured using existing formulations. The ideal compliant joints developed can be formulated, for the most part, using linear algebraic equations, allowing for the elimination of the dependent variables at a preprocessing stage, thereby significantly reducing the problem dimension and array storage needed. Furthermore, the constraint equations are automatically satisfied at the position, velocity, and acceleration levels. When using the proposed approach to model large scale chain systems, differences in computational efficiency between the augmented formulation and the recursive methods are eliminated, and the CPU times resulting from the use of the two formulations become similar regardless of the complexity of the system. The elimination of the joint constraint equations and the associated dependent variables also contribute to the solution of a fundamental singularity problem encountered in the analysis of closed loop chains and mechanisms by eliminating the need to repeatedly change the chain or mechanism independent coordinates. It is shown that the concept of the knot multiplicity used in computational geometry methods, such as B-spline and NURBS (Non-Uniform Rational B-Spline), to control the degree of continuity at the breakpoints is not suited for the formulation of many ideal compliant joints. As explained in this paper, this issue is closely related to the inability of B-spline and NURBS to model structural discontinuities. Another contribution of this paper is demonstrating that large deformation ANCF finite elements can be effective, in some MBS application, in solving small deformation problems. This is demonstrated using a heavily constrained tracked vehicle with flexible link chains. Without using the proposed approach, modeling such a complex system with flexible links can be very challenging. The analysis presented in this paper also demonstrates that adding significant model details does not necessarily imply increasing the complexity of the MBS algorithm.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In