0

Full Content is available to subscribers

Subscribe/Learn More  >

Temporally Consistent Simulation of Robots and Their Controllers

[+] Author Affiliations
James R. Taylor, Evan M. Drumwright, Gabriel Parmer

George Washington University, Washington, DC

Paper No. DETC2014-35609, pp. V006T10A043; 9 pages
doi:10.1115/DETC2014-35609
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME

abstract

Researchers simulate robot dynamics to optimize gains, trajectories, and controls and to validate proper robot operation. In this paper, we focus on this latter application, which allows roboticists to verify that robots do not damage themselves, the environments they are situated within, or humans. In current simulations, robot control code runs in lockstep with the dynamics integration. This design can result in code that appears viable in simulation but runs too slowly on physical systems. Addressing this problem requires overcoming significant challenges that arise due both to the speed of dynamic simulation running time (simulations may run 1/10 or 1/100 of real-time or slower) and to the variability of the running times (e.g., the speed of collision detection algorithms depends on pairwise object proximities). These difficulties imply that one must not only slow the control software but also scale controller running speeds dynamically. We describe the numerous architectural and OS-level technical challenges that we have overcome to yield temporally consistent simulation for modeling robots that use only real-time processes, and we show that our system is superior to the status quo using simulation-based experiments.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In