Full Content is available to subscribers

Subscribe/Learn More  >

Bi-Linear Shear Deformable ANCF Shell Element Using Continuum Mechanics Approach

[+] Author Affiliations
Hiroki Yamashita, Hiroyuki Sugiyama

The University of Iowa, Iowa City, IA

Antti I. Valkeapää

Lappeenranta University of Technology, Lappeenranta, Finland

Paramsothy Jayakumar


Paper No. DETC2014-35349, pp. V006T10A040; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME


In this investigation, a bi-linear shear deformable shell element is developed using the absolute nodal coordinate formulation for the large deformation analysis of multibody shell structures. The element consists of four nodes, each of which has the global position coordinates and the gradient coordinates along the thickness introduced for describing the orientation and deformation of the cross section of the shell element. The global position field on the mid-plane and the position vector gradient at a material point in the element are interpolated by bi-linear polynomials. The continuum mechanics approach is used to formulate the generalized elastic forces, allowing for the consideration of nonlinear constitutive models in a straightforward manner. The element locking exhibited in this type of element can be eliminated using the assumed natural strain (ANS) and enhanced assumed strain (EAS) approaches. In particular, the combined ANS and EAS approach is introduced to alleviate the thickness locking arising from the erroneous transverse normal strain distribution. Several numerical examples are presented in order to demonstrate the accuracy and the rate of convergence of numerical solutions obtained by the bi-linear shear deformable ANCF shell element proposed in this investigation.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In