0

Full Content is available to subscribers

Subscribe/Learn More  >

Redundancy-Free Integration of Rotational Quaternions in Minimal Form

[+] Author Affiliations
Zdravko Terze, Dario Zlatar

University of Zagreb, Zagreb, Croatia

Andreas Mueller

UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China

Paper No. DETC2014-35118, pp. V006T10A017; 5 pages
doi:10.1115/DETC2014-35118
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME

abstract

Redundancy-free computational procedure for solving dynamics of rigid body by using quaternions as the rotational kinematic parameters will be presented in the paper. On the contrary to the standard algorithm that is based on redundant DAE-formulation of rotational dynamics of rigid body that includes algebraic equation of quaternions’ unit-length that has to be solved during marching-in-time, the proposed method will be based on the integration of a local rotational vector in the minimal form at the Lie-algebra level of the SO(3) rotational group during every integration step. After local rotational vector for the current step is determined by using standard (possibly higher-order) integration ODE routine, the rotational integration point is projected to Sp(1) quaternion-group via pertinent exponential map. The result of the procedure is redundancy-free integration algorithm for rigid body rotational motion based on the rotational quaternions that allows for straightforward minimal-form-ODE integration of the rotational dynamics.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In