0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation-Based Unassisted Sit-to-Stand Motion Prediction for Healthy Young Individuals

[+] Author Affiliations
Burak Ozsoy, James Yang

Texas Tech University, Lubbock, TX

Paper No. DETC2014-34231, pp. V006T10A001; 8 pages
doi:10.1115/DETC2014-34231
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4639-1
  • Copyright © 2014 by ASME

abstract

Sit-to-stand (STS) is a common activity in daily lives which requires relatively high joint torques and a robust coordination of lower and upper extremities with postural stability. Many elderly, people with lower limb injuries, and patients with neurological disorders or musculoskeletal abnormalities have difficulties in accomplishing this task. In contrast to the literature on numerous experimental studies of STS, there are limited studies that were carried out through simulations. In literature, mostly bilateral symmetry was assumed for STS tasks, however even for healthy people, it is more difficult to perform STS tasks with a perfect bilateral symmetry. The goal of this research is to develop a three-dimensional unassisted STS motion prediction formulation for healthy young individuals. Predicted results will be compared with experimental results found in literature for the validation of the proposed formulation.

Copyright © 2014 by ASME
Topics: Simulation

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In