Full Content is available to subscribers

Subscribe/Learn More  >

An Offset Panel Technique for Thick Rigidily Foldable Origami

[+] Author Affiliations
Bryce J. Edmondson, Spencer P. Magleby, Larry L. Howell

Brigham Young University, Provo, UT

Robert J. Lang

Lang Origami, Alamo, CA

Paper No. DETC2014-35606, pp. V05BT08A054; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4637-7
  • Copyright © 2014 by ASME


A technique for thickness accommodation in origami-inspired mechanism design is introduced. Mathematically, origami panels are generally assumed to be planar with zero thickness. Origami models can be viewed as kinematic mechanisms where folds are revolute joints and panels are links. An origami-inspired mechanism can achieve the same kinematic motion as the paper origami source model if all joints lie along the folds in the zero-thickness plane. The panels are stacked in sequence in the closed (stowed) position. A joint plane is chosen and each panel is given extensions connecting each panel to the chosen plane. The extensions from the stacked panels allow each panel to be rigidly connected to its revolute joint in the chosen plane with all other joints. The accommodation technique utilizes origami models that are rigidly foldable. The height of the extensions are determined by the sum of the thicknesses of all panels between its stowed panel and the chosen joint plane. Any panel thickness can be accommodated, including multiple panel thicknesses within the same mechanism. Process steps for offset panel design of origami-inspired mechanisms are presented.

Copyright © 2014 by ASME
Topics: Kinematics , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In