Full Content is available to subscribers

Subscribe/Learn More  >

Bistable Compliant Mechanism Using Magneto Active Elastomer Actuation

[+] Author Affiliations
Adrienne Crivaro, Rob Sheridan, Mary Frecker, Timothy W. Simpson, Paris von Lockette

The Pennsylvania State University, University Park, PA

Paper No. DETC2014-35007, pp. V05BT08A046; 9 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4637-7
  • Copyright © 2014 by ASME


In the emerging field of origami engineering, it is important to investigate ways to achieve large deformations to enable significant shape transformations. One way to achieve this is through the use of bistable mechanisms. The goal in this research is to investigate the feasibility and design of a compliant bistable mechanism that is actuated by magneto active elastomer (MAE) material. The MAE material has magnetic particles embedded in the material that are aligned during the curing process. When exposed to an external field, the material deforms to align the embedded particles with the field. We investigate actuation of the MAE material through the development of finite element analysis (FEA) models to predict the magnetic field required to snap the device from its first stable position to its second for various geometries and field strengths. The FEA model also predicts the displacement of the center of the mechanism as it moves from one position to the other to determine if the device is in fact bistable. These results help show the relationship between the substrate properties and the bistability of the device. Experimental results validate the FEA models and demonstrate the functionality of active materials to be used as actuators for such devices and applications of origami engineering.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In