0

Full Content is available to subscribers

Subscribe/Learn More  >

Differentiating Bending From Folding in Origami Engineering Using Active Materials

[+] Author Affiliations
Carlye Lauff, Timothy W. Simpson, Mary Frecker, Zoubeida Ounaies, Saad Ahmed, Paris von Lockette, Rebecca Strzelec, Robert Sheridan

The Pennsylvania State University, University Park, PA

Jyh-Ming Lien

George Mason University, Fairfax, VA

Paper No. DETC2014-34702, pp. V05BT08A040; 12 pages
doi:10.1115/DETC2014-34702
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4637-7
  • Copyright © 2014 by ASME

abstract

Origami engineering — the use of origami principles in engineering applications — provides numerous opportunities to revolutionize the way we design, manufacture, assemble, and package products and devices. By combining origami principles with active materials, we can create reconfigurable products and devices that can fold and unfold on demand. In origami, the folded medium is paper, yet many engineering applications require materials with finite thickness to provide the necessary strength and stiffness to achieve the desired functionality. In such applications, it is important to distinguish between bending and folding so that we understand the differences in material behavior when actuated. In this paper, we propose definitions for bending and folding for materials used in engineering applications. The literature is reviewed in detail to provide context and support for the proposed definitions, and examples from our own research with active materials, specifically, magneto-active elastomers (MAE) and dielectric elastomers (DE), are used to illustrate the subtle, yet important, differences between bending and folding in materials with finite thickness.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In