0

Full Content is available to subscribers

Subscribe/Learn More  >

An Inverted Straight Line Mechanism for Augmenting Joint Range of Motion in a Humanoid Robot

[+] Author Affiliations
Coleman Knabe, Bryce Lee

Virginia Tech, Blacksburg, VA

Dennis Hong

University of California, Los Angeles, CA

Paper No. DETC2014-35123, pp. V05BT08A015; 6 pages
doi:10.1115/DETC2014-35123
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4637-7
  • Copyright © 2014 by ASME

abstract

Many robotic joints powered by linear actuators suffer from a loss of torque towards the limits of the range of motion. This paper presents the design of a fully backdriveable, force controllable rotary actuator package employed on the Tactical Hazardous Operations Robot (THOR). The assembly pairs a ball screw-driven linear Series Elastic Actuator (SEA) with a planar straight line mechanism. The mechanism is a novel inversion of a Hoeken’s four-bar linkage, using the ball screw as a linear input to actuate the rotary joint. Link length ratios of the straight line mechanism have been chosen to optimize constant angular velocity, resulting in a nearly constant mechanical advantage and peak torque of 115 [Nm] throughout the 150° range of motion. Robust force control is accomplished through means of a lookup table, which is accurate to within ±0.62% of the nominal torque profile for any load case.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In