0

Full Content is available to subscribers

Subscribe/Learn More  >

A Method for a More Accurate Calculation of the Stiffness Coefficient in a Pseudo-Rigid-Body Model (PRBM) of a Fixed-Free Beam Subjected to End Forces

[+] Author Affiliations
Ashok Midha, Raghvendra S. Kuber, Vivekananda Chinta, Sushrut G. Bapat

Missouri University of Science and Technology, Rolla, MO

Paper No. DETC2014-35366, pp. V05AT08A045; 10 pages
doi:10.1115/DETC2014-35366
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4636-0
  • Copyright © 2014 by ASME

abstract

The pseudo-rigid-body model (PRBM) concept allows compliant mechanisms to be modeled using existing knowledge of rigid-body mechanisms, thereby considerably simplifying their analysis and design. The PRBMs represent the compliant segments with two or more rigid-body segments, connected using pin joints (characteristic pivots). The beam compliance is modeled using a torsional spring placed at the characteristic pivot, whose spring constant K is evaluated using a pseudo-rigid-body parameter termed as the beam stiffness coefficient. This paper presents a method to more accurately calculate the beam stiffness coefficient for a fixed-free compliant beam subjected to a combination of horizontal and vertical forces. The improved stiffness coefficient (KΘ) expressions are derived as a function of the pseudo-rigid-body angle, Θ and the load factor, n. To exemplify the application of the improved results, the expressions derived are successfully implemented in modeling a fixed-guided beam with an inflection point, allowing it to be modeled as two fixed-free beams pinned at the inflection point.

Copyright © 2014 by ASME
Topics: Stiffness

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In