Full Content is available to subscribers

Subscribe/Learn More  >

A Parameterization Approach for Compliance Analysis and Synthesis of Flexure Mechanisms

[+] Author Affiliations
M. Jia, R. P. Jia, J. J. Yu

Beihang University, Beijing, China

Paper No. DETC2014-34996, pp. V05AT08A039; 12 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4636-0
  • Copyright © 2014 by ASME


This paper presents an approach based on parameterized compliance for type synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. The parameterized compliance matrixes have been derived for commonly used flexure elements which are significantly influenced by flexure parameters including material and geometric properties. Different parameters of flexure elements generate different degree of freedom (DOF) characteristic of types. Enlightened by the compliance analysis of flexure elements, a parameterization approach with detailed processes and steps is introduced in this paper to help analyze and synthesize flexure mechanisms in the case study as serial chains, parallel chains, and combination hybrid chains. For a hybrid flexure, finite element modeling simulations results are compared to analytical compliance elements characters. Within linear deformations, the maximum compliance errors of analytical models are less than 6% compared with FE models. The final goal of this work is to provide a parameterized approach for type synthesis of flexure mechanisms that can be used to configure and change the parameters of flexure mechanisms to achieve desired DOF requirements of types initially.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In