Full Content is available to subscribers

Subscribe/Learn More  >

Design and Analysis of New Large-Range XY Compliant Parallel Micromanipulators

[+] Author Affiliations
Jingjun Yu, Zhenguo Li, Dengfeng Lu, Guanghua Zong

Beihang University, Beijing, China

Guangbo Hao

University College Cork, Cork, Ireland

Paper No. DETC2014-34982, pp. V05AT08A038; 9 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4636-0
  • Copyright © 2014 by ASME


The need for a compliant parallel micromanipulator (CPM) providing large motion range and high precision is increasing. Existing CPMs vary in constraint configurations and therefore it is necessary to verify/compare their characteristics. This paper compares three kinds of typical over-constrained CPMs, and derives their theoretical compliance matrix models pointing out constraint characteristics of the three kinematic configurations. Then the three CPMs are analyzed with FEA (finite element analysis), and results illustrate that the theoretical compliance matrix models are close to their FEA models. Moreover, cross-axis coupling along two motion axes (X&Y), parasitic motion and compliance fluctuation of motion stages are described in details. Through analyzing the FEA results, we present an improved CPM with a mirror-symmetry structure and redundant-constraint characteristic which can effectively constrain in-plane yaw and cross-axis coupling. It is shown that the improved CPM presented in this paper has a series of merits: large motion range up to 10mm×10mm in the dimension of 311mm×311mm×24mm, small compliance fluctuation (only 37.32% of that of the initial model), a smaller cross-axis coupling (only 24.39% of that of the initial model generated by a single-axis 5mm driving), a smaller in-plane parasitic yaw (only 53.57% of that of the initial model generated by double-axis 5mm driving).

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In