0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Compliant Mechanisms Using a Pseudo-Rigid-Body Model Based Topology Optimization Method

[+] Author Affiliations
Mohui Jin, Xianmin Zhang, Benliang Zhu

South China University of Technology, Guangzhou, China

Paper No. DETC2014-34325, pp. V05AT08A030; 8 pages
doi:10.1115/DETC2014-34325
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 38th Mechanisms and Robotics Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4636-0
  • Copyright © 2014 by ASME

abstract

This paper presents a novel method for the topological synthesis of flexure-based compliant mechanisms. Such kind of mechanisms are usually obtained by replacing the kinematic pairs of existing rigid-body mechanisms with flexure hinges, which is often regarded as the rigid-body replacement approach. This approach uses the topologies from rigid-body mechanism and pays little attention to the selection of the optimal topology among them. The proposed method tries to find out the optimal topology directly from design problem, without referencing to the existing rigid-body mechanisms. The topology of the flexure-based compliant mechanisms is represented by the pseudo-rigid-body model (PRBM). The PRBM is expressed in a ground structure using an adjacency matrix. An analysis method based on the principle of minimum potential energy is introduced to evaluate the static performance of the PRBM candidates quantitatively. Using genetic algorithm (GA), the optimal PRBM can be found out according to the objective function that is based on the analysis results. The validity of the proposed method is tested on a single-input-output compliant mechanism design problem.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In