Full Content is available to subscribers

Subscribe/Learn More  >

Eigenvalue Veering in Quartz Tuning Fork Sensors and its Effect on Dynamic Atomic Force Microscopy

[+] Author Affiliations
John Melcher

National Institute of Standards and Technology, Gaithersburg, MD

Paper No. DETC2014-35673, pp. V004T09A033; 6 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3


Quartz tuning fork (QTF) sensors offer an attractive alternative to traditional silicon microcantilevers for sensing applications in dynamic atomic force microscopy (DAFM). The QTF sensor consists of two identical, weakly-coupled tines with a sharp tip affixed to the distal end of one tine. The fundamental anti-phase mode of the QTF achieves a stable resonant frequency with a high Quality factor making it ideal for DAFM applications in which a small shift in the resonant frequency is linked to a tip-sample force. The addition of the tip-sample force also breaks the symmetry of the QTF leading to a classic eigenvalue veering scenario. The eigenvalue veering and accompanying mode localization phenomena violate the standard DAFM modeling assumptions which treat the addition of the tip-sample force as a small perturbation to a single-degree-of-freedom oscillator. We find that the eigenvalue veering can contribute a systematic error in force measurements on the order of 20%. Methodology for correcting the systematic error caused by eigenvalue veering is proposed.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In