0

Full Content is available to subscribers

Subscribe/Learn More  >

Nanocomposites Based on Multiwalled Carbon Nanotubes With Effective Young’s Modulus Dependent on Number of Layers

[+] Author Affiliations
Preeti Joshi, S. H. Upadhyay

Indian Institute of Technology Roorkee, Roorkee, UT, India

Paper No. DETC2014-34823, pp. V004T09A029; 6 pages
doi:10.1115/DETC2014-34823
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME

abstract

The excellent combination of high strength, stiffness, low density and aspect ratio makes carbon nanotubes ideal reinforcement for nanocomposites. The load transfer between the outer and inner layers of multiwalled carbon nanotubes (MWCNT) is one of the important factor in the reinforcement of nanocomposites. In this work, the effect of variation in number of layers of multiwalled carbon nanotubes on effective tensile, compressive and transverse modulus of composite is evaluated. A 3-D finite element model based on representative volume element, consisting of multiwalled carbon nanotube made of shell elements surrounded by solid matrix material is built. With the increase in number of layers in multiwalled carbon nanotubes, the compressive modulus of composite increases, while the tensile modulus decreases. The transverse modulus of composite is found to increase, with the increase in number of layers in MWCNT. The finite element results for composite are compared with the rule of mixtures results using formulae.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In