0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Method to Achieve High Frequency Stability of Electrostatically Actuated Doubly-Clamped Nano-Oscillators

[+] Author Affiliations
A. Bhushan, M. M. Inamdar, D. N. Pawaskar

Indian Institute of Technology Bombay, Mumbai, India

Paper No. DETC2014-34949, pp. V004T09A012; 8 pages
doi:10.1115/DETC2014-34949
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME

abstract

Frequency stability is a desirable property for micro- and nanoelectromechanical system oscillators used in reference and timing applications. In case of doubly-clamped oscillators, resonant frequencies are highly sensitive to the operating temperature because of development of internal stresses due to thermal expansion under the restraint of fixed boundary conditions. In this paper, we present a design procedure to reduce the variation of resonant frequency with respect to change in operating temperature, in other words improve the frequency stability, by exploiting the interaction between electrostatic and geometric nonlinearities in electrostatically actuated doubly-clamped nano-oscillators. We have modeled the nano-oscillators using Euler-Bernoulli beam theory and Galerkin based reduced order modeling technique. We have examined first natural frequency variation due to temperature change for different carbon nanotube oscillators and an optimization based design procedure has been devised for improving the frequency stability.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In