Full Content is available to subscribers

Subscribe/Learn More  >

Saline Solution Effects on Propidium Iodide Uptake in Nanoinjected HeLa Cells

[+] Author Affiliations
John W. Sessions, Brad W. Hanks, Tyler E. Lewis, Brian D. Jensen, Dallin L. Lindstrom, Sandra H. Burnett

Brigham Young University, Provo, UT

Paper No. DETC2014-35431, pp. V004T09A006; 9 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME


Being able to deliver molecular loads to the intracellular space of mammalian cells is a key initial step of genetic engineering. In the following work, experimentation with nanoinjection, a non-viral molecular load delivery technique, was examined in regards to transmembrane delivery of propidium iodide (PI), a dye that cannot penetrate the cell membrane and fluoresces when bound to genetic material. Investigation includes two environmental factors: peak pulse amplitude (1.5 to 3, 5, 7, or 9 V) and saline type (HBSS, PBS with potassium, and PBS without potassium). Results indicate that PBS with potassium has significantly higher PI uptake efficiency than the other two saline solutions for pulsed voltages of 3V, 5V, and 7V (with the peak value being 3.352 times greater than the positive control). Also, cell viability analysis indicates that there is a measureable reduction in cell viability for voltage protocol samples in comparison to non-voltage protocol samples. Cell viabilities range from 74.5% to 89.4% for voltage protocol samples. Findings suggest that a possible combination of physical/electrical variables work in concert with biological mechanisms to contribute to overall cell survival and PI uptake efficiency in nanoinjection.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In