0

Full Content is available to subscribers

Subscribe/Learn More  >

Reliability-Based Multidisciplinary Design Optimization Using Subset Simulation Analysis and its Application in the Hydraulic Transmission Mechanism Design

[+] Author Affiliations
Debiao Meng, Hong-Zhong Huang, Zhonglai Wang, Xiaoling Zhang, Yu Liu

University of Electronic Science and Technology of China, Chengdu, China

Paper No. DETC2014-34732, pp. V004T06A016; 10 pages
doi:10.1115/DETC2014-34732
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME

abstract

The traditional Monte Carlo Simulation (MCS) approach can provide high reliability analysis accuracy, however, with low computational efficiency. Especially, it is computationally expensive to evaluate a very small failure probability. In this paper, a Subset Simulation-based Reliability Analysis (SSRA) approach is combined with the Multidisciplinary Design Optimization (MDO) to improve the computational efficiency in the Reliability based Multidisciplinary Design Optimization (RBMDO) problems. Furthermore, the Sequential Optimization and Reliability Assessment (SORA) approach is utilized to decouple the RBMDO into MDO and reliability analysis. The formula of MDO with SSRA within the framework of SORA (MDO-SSRA-SORA) is proposed to solve the design optimization problem of hydraulic transmission mechanism.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In