Full Content is available to subscribers

Subscribe/Learn More  >

Mining End-of-Life Materials Suitable for Material Resynthesis and Discovering New Application Domains

[+] Author Affiliations
Kristopher Doll, Conrad S. Tucker

The Pennsylvania State University, University Park, PA

Paper No. DETC2014-34779, pp. V004T06A008; 10 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME


The United States generates more than 250 million tons of municipal solid waste (trash/garbage), with only 34% being recycled. In the broader global environment, the problem of waste management is becoming increasingly relevant, demanding innovative solutions. Traditional End-of-Life (EOL) approaches to managing waste include recycle, reuse, remanufacture and disposal. Recently, resynthesis was proposed as an alternative to traditional EOL options that combines multiple products to create a new product distinct from its parent assemblies. Resynthesis employs data mining and natural language processing algorithms to quantify assembly/subassembly combinations suitable for new product combinations. However, existing resynthesis methodologies proposed in the design community have been limited to exploring subassembly combinations, failing to explore potential combinations on a materials level. The authors of this paper propose a material resynthesis methodology that combines the materials of multiple EOL products using conventional manufacturing processes that generate candidate resynthesized materials that satisfy the needs of existing domains/applications. Appropriate applications for a resynthesized material are discovered by comparing the properties of the new material to the functional requirements of application classes which are found using clustering and latent semantic analysis. In the course of this paper, the authors present a case study that demonstrates the feasibility of the proposed material resynthesis methodology in the construction materials domain.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In