0

Full Content is available to subscribers

Subscribe/Learn More  >

3D Printing Technologies for Tissue Engineering

[+] Author Affiliations
Weibin Lin, Qingjin Peng

University of Manitoba, Winnipeg, MB, Canada

Paper No. DETC2014-34408, pp. V004T06A002; 9 pages
doi:10.1115/DETC2014-34408
From:
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 19th Design for Manufacturing and the Life Cycle Conference; 8th International Conference on Micro- and Nanosystems
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4635-3
  • Copyright © 2014 by ASME

abstract

Tissue engineering (TE) integrates methods of cells, engineering and materials to improve or replace biological functions of native tissues or organs. 3D printing technologies have been used in TE to produce different kinds of tissues. Human tissues have intricate structures with the distribution of a variety of cells. For this reason, existing methods in the construction of artificial tissues use universal 3D printing equipment or some simple devices, which is hard to meet requirements of the tissue structure in accuracy and diversity. Especially for soft tissue organs, a professional bio-3D printer is required for theoretical research and preliminary trial. Based on review of the exiting 3D printing technologies used in TE, special requirements of fabricating soft tissues are identified in this research. The need of a proposed bio-3D printer for producing artificial soft tissues is discussed. The bio-3D printer suggested consists of a pneumatic dispenser, a temperature controller and a multi-nozzle changing system.

Copyright © 2014 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In