Full Content is available to subscribers

Subscribe/Learn More  >

Biomechanical Analysis in the Lumbar Spine During Two-Step Traction Therapy

[+] Author Affiliations
Yoon Hyuk Kim, Won Man Park, Kyungsoo Kim

Kyung Hee University, Yongin, Gyeonggi, Korea

Paper No. DETC2014-35701, pp. V003T12A008; 2 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 16th International Conference on Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in Biomedical Devices
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4634-6
  • Copyright © 2014 by ASME


Traction therapy is a widely used conservative treatment for low back pain. However, the effects of traction therapy on lumbar spine biomechanics are not well known. We investigated biomechanical effects of two-step traction therapy, which consists of global axial traction and local decompression, on the lumbar spine using a validated three-dimensional finite element model of the lumbar spine. One-third of body weight was applied at the center of the L1 vertebra toward the superior direction for the first axial traction. Anterior translation of L4 spinal bone was considered as the second local decompression. The lordosis angle between the superior planes of the L1 vertebra and sacrum was 44.6° at baseline, 35.2° with global axial traction, and 46.4° with local decompression. The fibers of annulus fibrosus in the posterior region, and intertransverse and posterior longitudinal ligaments experienced stress primarily during global axial traction, these stresses decreased during local decompression. A combination of global axial traction and local decompression would be helpful for reducing tensile stress on the fibers of the annulus fibrosus and ligaments, and intradiscal pressure in traction therapy. The present study could be used to develop a safer and more effective type of traction therapy.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In