Full Content is available to subscribers

Subscribe/Learn More  >

Automotive Glass Exciter Technology for Acoustic Application

[+] Author Affiliations
Babak Ebrahimi, Amir Khajepour

University of Waterloo, Waterloo, ON, Canada

Todd Deaville

Magna International Inc., Aurora, ON, Canada

Paper No. DETC2014-34526, pp. V003T01A032; 6 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 16th International Conference on Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in Biomedical Devices
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4634-6
  • Copyright © 2014 by ASME


This paper discusses the modeling and analysis of a novel audio subwoofer system for automotive applications using the automobile windshield glass. The use of a piezo-electric actuator coupled with a mechanical amplifier linked to a large glass panel provides a highly efficient method of producing sound. The proposed subwoofer system has the advantage over existing conventional systems of not only reducing the weight of the automobile, but also a significant power savings resulting in an increase of expected fuel economy. Among various design challenges, the glass-sealing design is of huge importance, as it affects the system dynamic response and so the output sound characteristics. The main goal in this manuscript is to evaluate different glass-sealing design configurations by providing a comprehensive Finite Element model of the system. To do so, a comprehensive, yet simplified FE model is developed, and experimental studies are performed in the component level to fine-tune and verify the model. Harmonic response of the system for each sealing configuration design is obtained in the frequency range of 0–200 Hz, and the results are compared and discussed. The finite element model is also beneficial in preliminary design of other components as well as the exciter placement, and predicting the performance of the overall system.

Copyright © 2014 by ASME
Topics: Glass , Acoustics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In