Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Full-State Estimation and Dynamic-Model-Based Prediction for Road-Vehicles

[+] Author Affiliations
Aliakbar Alamdari, Javad Sovizi, Venkat N. Krovi

SUNY at Buffalo, Buffalo, NY

Paper No. DETC2014-34453, pp. V003T01A018; 8 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 16th International Conference on Advanced Vehicle Technologies; 11th International Conference on Design Education; 7th Frontiers in Biomedical Devices
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4634-6
  • Copyright © 2014 by ASME


In this paper, we address the enhanced state estimation and prediction system for automobile applications by fusing relatively low-cost and noisy Inertial Navigation System (INS) sensing with Global Positioning System (GPS) measurements. An unscented Kalman filter is used to merge multi-rate measurements from GPS and INS sensors together with a high-fidelity vehicle-dynamics model for state-predictions. The high-fidelity motion model (including suspension-effects) for the vehicle motion trajectory on uneven terrain is captured by a 20-state system of nonlinear differential equations. Computer simulation results illustrate the effectiveness of sensor-fusion (building upon the merger of an inexpensive INS sensing with GPS based measurements) to accurately estimate the full system-state. The relative ease of implementation, accuracy and predictive performance with low-cost sensing will facilitate its use in various electronic control and safety-systems, such as Electronic Stability Program, Anti-lock Brake Systems, and the Lateral Dynamic Stability Control.

Copyright © 2014 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In