Full Content is available to subscribers

Subscribe/Learn More  >

Solving the Reconfigurable Design Problem for Multiability With Application to Robotic Systems

[+] Author Affiliations
Jeffrey D. Arena, James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2014-35314, pp. V02BT03A039; 14 pages
  • ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 40th Design Automation Conference
  • Buffalo, New York, USA, August 17–20, 2014
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-4632-2
  • Copyright © 2014 by ASME


Systems that can be reconfigured are valuable in situations where a single artifact must perform several different functions well, and are especially important in cases where system demands are not known a priori. Design of reconfigurable systems present unique challenges compared to fixed system design. Increasing reconfigurable capability improves system utility, but also increases system complexity and cost. In this article a new design strategy is presented for the design of reconfigurable systems for multiability. This study is limited to systems where all system functions are known a priori, and only continuous means of reconfiguration are considered. Designing such a system requires determination of (1) what system features should be reconfigurable, and (2) what should the range of reconfigurability of these features be. The new design strategy is illustrated using a reconfigurable delta robot, which is a parallel manipulator that can be adapted to perform a variety of manufacturing operations. In this case study the tradeoff between end effector stiffness and speed is considered over two separate manipulation tasks.

Copyright © 2014 by ASME
Topics: Design , Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In